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LETTER TO THE EDITOR 

l / d  expansions for critical amplitudes 

D S Gaunt 
Department of Physics, King’s College, Strand, London WC2R 2LS, UK 

Received 13 November 1985 

Abstract. We show how to expand criticalamplitudes in inverse powers of the dimensionality 
d. The technique, which is rather general, is applied to the classical n-vector model, with 
particular emphasis on the self-avoiding walk ( n  = 0) and Ising ( n  = 1) cases. The existence 
of these expansions and of similar ones for critical points and critical constants suggests 
that l / d  expansions for non-universal quantities are analogous to the E expansions for 
universal quantities. 

Some years ago, Fisher and Gaunt (1964) showed how the critical point of the spin-$ 
Ising model with nearest-neighbour interactions and the self-avoiding walk (SAW) 

problem on a d-dimensional simple hypercubic lattice of coordination number q = 2d 
may be expanded in inverse powers of d through O(d-’). Their work was extended 
to the general classical n-vector model by Gerber and Fisher (1974), whose expansion 
contains the Ising ( n  = l),  SAW ( n  = 0) and spherical model ( n  +CO) results as special 
cases. Subsequently, analogous expansions have been derived for the critical points 
arising in a variety of lattice statistical problems including, for example, site and bond 
percolation processes, both undirected (Gaunt et a1 1976, Gaunt and Ruskin 1978) 
and directed (Blease 1977), neighbour-avoiding walks (Gaunt et a1 1984), trails 
(Guttmann 1985) and the growth parameters for site and bond trees (Gaunt et a1 1982), 
c animals (Whittington et al 1983) and unrestricted animals (Gaunt et al 1976, Gaunt 
and Ruskin 1978). 

It is also possible to derive l l d  expansions for some critical constants. For the 
Ising model, for example, one employs the expansion, given by Fisher and Gaunt 
(1964) (FG) through O(d-’), for the reduced free energy, In 2, at some arbitraiy 
temperature T 5 T,. From this result one may readily obtain similar expansions for 
the reduced internal energy and entropy. Substituting the 1/ d expansion for T, yields 
l l d  expansions for the critical free energy, internal energy and entropy. Nath and 
Frank (1982) have given the resulting expansion for the reduced internal energy of 
the Ising (and spherical) model at its critical temperature through O(d-’). 

In this letter, we show, to our knowledge for the first time, how to expand critical 
amplitudes in inverse powers of d. Specifically, we consider the zero-field susceptibility 
of the classical n-vector model and derive an expansion for the critical amplitude 
correct through third order in l / d  and for general n. For the special cases n = 1 (Ising) 
and n = 0 (SAW), more complete information is available, and this enables us to calculate 
two additional terms, i.e. through O( d-5). 
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Consider, first, the Ising model ( n  = 1) for which the reduced zero-field susceptibility 
may be expanded as 

/ y o = l +  alul 
I =  I 

where U = tanh(J/kT) is a high temperature expansion variable. The coefficients al 
behave, asymptotically, like 

a1 = AP””w’ (/-,a) ( 1 )  

where w = l /uc ,  y is the usual critical exponent and A is (apart from a constant factor) 
the corresponding critical amplitude of the susceptibility. For d greater than the critical 
dimension d, (=4  for the Ising model), y = 1 and the critical amplitude is given, more 
formally, by 

A = lim 1-m ( a l / o ‘ )  d > d,. (2) 

FG have given expansions, valid for large d, of a l ( d )  and o ( d )  in powers of l/a, 
where U = 2d  - 1.  Thus, from FG, equation (5.26), we have for 1s 1 1 ,  

a l (d )  = qU’-’[l - ( 1 - 3 ) f 2 -  (31 - 1 7 ) 0 - ~ +  (i12- 17f l+  1 2 8 ) ~ - ~  

+ ( 3 1 2 - 1 0 8 f l + 1 0 7 2 ~ ) ~ - S + .  . .] (3) 

w ( d ) = a [ l  - u - ~ - ~ u - ~ -  1 4 ~ - ~ - 7 9 f ~ - ~ - .  , .]. (4)  

and from FG, equation (5.28b), 

Remarkably, the ratio a l / w l  turns out to be independent of 1 and hence the limit of 
l + a  in (2) follows trivially. We find 

A,=(1+a-’)(l+3a-2+17~-3+128a-4+1072~a-s+. . ,). ( 5 )  

The subscript on A refers to the value of n. 
The corresponding result for the SAW problem (n = 0) follows in a similar fashion. 

Expressions analogous to (3) and (4) are given by FG, equations (5.15) and (5.18b), 
respectively, and using these we obtain 

A, = ( 1 + a-’)( 1 + 3 f 2  + 1 3 ~ - ~  + 1 0 7 ~ - ~ +  8 9 5 8  + . . .). ( 6 )  

The prefactor in (5)  and (6) is the Bethe approximation for A, as may be seen from 
FG, equations (5.21) and (5.6), respectively. 

For general n, we have used the results given by Gerber and Fisher (1974) (GF). 

In this case, K( J / k T )  is the appropriate high temperature expansion variable and 
for d > d, the critical amplitude is given by 

A ( n )  =lim 1-m (a&:). (7) 

In equation (3.15), GF have given a l / q  expansion for qK, valid through fifth order 
and for general n. From this result we obtain the corresponding l/a expansion, namely, 

WK, = 1 + ( 1 + ̂ ) + ( 2  +%) + [ 12 +--!!- ( 15 12 --+-)I 8 a-4 

n + 2  n + 2  n + 2  n + 2  n + 4  

76 40 
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Using the reduced lattice constants and corresponding graphical weights given in 
(3.10)-(3.13) and table I1 of GF, we find 

a,/qo'-' = 1 - [( I - 3 )  + ( I  - 2)n/( n + 2 ) ] ~ - ~  

-[(2I- 1 3 ) + 3 ( 1 - 4 ) n / ( n + 2 ) ] ~ - ~ - .  . . . (9) 

Unfortunately, we have been unable to write down the coefficients of o-4 and U-' 

because, at these orders, GF do not give terms of order Io for some of the reduced 
lattice constants. It should be noted that such terms, although required for (9), do not 
contribute to the expression (8) for K,. 

By substituting (8) and (9) into (7) we obtain our most general result, namely, the 
critical amplitude of the classical n-vector model, given by 

A( n) = ( 1  + U - ' )  [ 1 + ( 3  +%) o-2 + ( 13 + 12 ) 6 3 +  ...I (10) 

correct through third order and for general n. 

(10) gives 
We note that for n = 0, (10) reduces, as it must, to ( 6 ) ,  i.e. A(0) = A,. For n = 1,  

A( 1) = ( 1  + U - ' ) (  1 +Ya-'+ 1 7 8 - t .  . .). (11) 

It is easy to show that the relation between the Ising amplitudes A(1) and Al  using 
the K and U variables, respectively, is (see, e.g., Essam and Hunter 1968) 

AI  = ( U  - u - ' ) K , A ( ~ ) .  (12) 

Substituting (4), ( 1 1 )  and (8) (with n = 1 )  into the right-hand side of (12) correctly 
reproduces (5) through O(l /03 ) .  

By combining (10) with a result from renormalisation group theory, we now derive 
a 1 /  LT expansion for the critical amplitude, A'( n), of the IOW temperature susceptibility 
of the n-vector model. According to renormalisation group theory, the critical ampli- 
tude ratio A( n ) / A ' (  n) is a universal quantity. This implies that for d 3 d,, 

A( n)/A'( n )  = R (13)  

where R, the ratio of the amplitudes in the mean-field approximation, is independent 
of o. The l / o  expansion for A'(n) follows from (10) and (13) given that R = 2  for 
the n-vector model. Thus, 

We now use the l / a  expansions to obtain numerical estimates of critical amplitudes 
for d > d,  and compare our results with high temperature series estimates obtained 
using standard series analysis techniques (Gaunt and Guttmann 1974). As pointed 
out by FG and GF, the l / a  expansion for the critical point of the n-vector model is 
almost certainly asymptotic. The same is true of the l / o  expansion for the critical 
amplitude. For the spherical model ( n - , ~ ) ,  GF have shown rigorously that l / u  
expansions do not always yield optimum numerical values when truncated at the 
smallest term. Nevertheless, in the absence of anything better for n = O  and 1,  we 
adopt either this criterion or truncation after the last term, and use an empirical 
procedure for estimating correction terms. 
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For the SAW problem, the terms in A. decrease monotonically when evaluated for 
d = 5 and 6 and consequently we truncate the expansion after the last term in each 
case. For d = 5 ,  the last term is probably the smallest but this is less certain for d = 6. 
Using this procedure we obtain 

A P )  = 1.207 ( d = 5 )  (15a) 

= 1.143 ( d  =6)  (156) 

which estimates are only 5.0% and 1.3% smaller, respectively, than the best series 
estimates (Guttmann 1981) 

A,  = 1.27 * 0.02 ( d = 5 )  (16a) 

= 1.158*0.008 ( d  =6) .  (166) 

The situation is precisely analogous for the Ising model and truncating the l/a 
expansions after the last term gives 

A‘,“’ = 1.220 ( d  = 5 )  (17a) 

5 1.149 ( d = 6 ) .  (17b) 

A ,  = 1.311 k0.009 ( d = 5 )  (18a) 

= 1.168*0.008 (d =6)  (18b) 

The best series estimates (Guttmann 1981), namely, 

are larger by only 6.9% and l.6%, respectively. 
Improved estimates of the amplitudes may be obtained from the l / a  expansions 

by following an empirical procedure similar to one that proved successful for estimating 
critical points (Gaunt er al 1976, Gaunt and Ruskin 1978) and has worked satisfactorily 
in all the cases studied so far. Assume, as seems likely, ,that for n = 0 and d = 5 the 
last term in the l/a expansion is the smallest. To obtain an estimate identical with 
the series result (16a), we must add to the l / a  expansion result f (=3.74) times the 
smallest term. Uncertainties in f of k1.19 will reproduce the uncertainties in (16a). 
Adopting the same procedure and the same value off for d = 6 and assuming the last 
term in the 1/a expansion is again the smallest, we obtain 

AY’ = 1.165 * 0.007 ( d  = 6). (19) 
This estimate, which is a considerable improvement over (15b), overlaps with the best 
series estimate (166). 

Adopting an analogous procedure for the Ising model, we find that for d = 5 the 
best series estimate (18a) is reproduced using f =  4.51 i0.45. This then leads to the 
improved estimate 

(d  = 6 )  (20) A(‘ )  - 1 - 1.181*0.003 

which only just fails to overlap with the best series estimate (186). 
In summary, we have shown how to expand critical amplitudes in inverse powers 

of the dimensionality. For the high temperature susceptibility amplitude of the classical 
n-vector model, we derive such an expansion correct through third order in l / d  and 
for general n. Two further terms are given for the special cases corresponding to the 
Ising ( n  = 1) and SAW ( n  = 0) problems. Good agreement has been obtained between 
numerical estimates of critical amplitudes obtained from the 1/ d expansions and from 
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the analysis of high temperature series. The low temperature susceptibility amplitude 
has a l /d  expansion which follows from the observation that the critical amplitude 
ratio is universal. 

We mention that l /d  expansions may also be derived, using similar techniques, 
for the critical amplitudes associated with a number of other problems, e.g. the mean 
size of finite clusters in both site and bond percolation processes, the number of site 
and bond lattice animals, etc. Finally, we suggest that l / d  expansions for non-universal 
quantities (i.e. critical points, critical constants, critical amplitudes) should be viewed 
as analogous to the well known E expansions which have been derived for universal 
quantities (i.e. critical exponents, critical amplitude ratios) using renormalisation group 
theory (e.g. BrCzin er a1 1976). 
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